Development of molecularly imprinted electrochemical sensors based on Fe3O4@MWNT-COOH/CS nanocomposite layers for detecting traces of acephate and trichlorfon.
نویسندگان
چکیده
In this study, we developed a novel biomimetic electrochemical sensor sensitized with a Fe3O4@carboxyl-functionalized multiwalled carbon nanotube/chitosan nanocomposite layer using a molecularly imprinted film as a recognition element for the rapid detection of acephate and trichlorfon. The performance of the imprinted sensor was investigated using cyclic voltammetry and differential pulse voltammetry, and the results indicated that the sensor exhibited fast responses to both acephate and trichlorfon. The imprinted sensor had good linear current responses to acephate and trichlorfon concentrations in the ranges from 1.0 × 10(-4) to 1.0 × 10(-10) M and 1.0 × 10(-5) to 1.0 × 10(-11) M, respectively. Under optimal conditions, the imprinted sensor had low limits of detection (signal to noise ratio, S/N = 3) of 6.81 × 10(-11) M for acephate and 8.94 × 10(-12) M for trichlorfon. The developed method was successfully applied to detect acephate and trichlorfon spiked in fortified kidney bean and cucumber samples with good recoveries ranging from 85.7% to 94.9% and relative standard deviations of 3.46-5.18%.
منابع مشابه
Fabrication of a Selective and Sensitive Electrochemical Sensor Modified with Magnetic Molecularly Imprinted Polymer for Amoxicillin
A modified electrochemical sensor for the determination of amoxicillin (AMX) was reported in this paper. The magnetic molecularly imprinted polymer (MMIP) were suspended in AMX solution and then collected on the surface of a magnetic carbon paste electrode (CPE) via a permanent magnet, situated within the carbon paste electrode and then the voltammetry signals were recorded. It was confirmed th...
متن کاملSeparation of STIGMA STEROL using magnetic molecularly imprinted nanopolymer fabricated by sol-gel method
Background & Aims: Magnetically molecularly imprinted polymers (MMIPs) are assumed as kind of sorbent polymers ‎which can separate or determine bioactive compounds from environment fast and specifically. ‎Magnetic properties, stability at various conditions (temperature , ionic strength and pH) and selective ‎function are among the advantages of these polymers in determin...
متن کاملGold nano-particles as electrochemical signal amplifier for immune-reaction monitoring
A new signal amplification strategy based on simultaneous application of gold nanoparticles (AuNPs) and horseradish peroxidase (HRP) was employed to improve the sensitivity of an electrochemical immunoassay for detection of human IgG (hIgG), as a model antigenic protein. This immunoassay system was fabricated on magnetic carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNT/Fe3...
متن کاملGold nano-particles as electrochemical signal amplifier for immune-reaction monitoring
A new signal amplification strategy based on simultaneous application of gold nanoparticles (AuNPs) and horseradish peroxidase (HRP) was employed to improve the sensitivity of an electrochemical immunoassay for detection of human IgG (hIgG), as a model antigenic protein. This immunoassay system was fabricated on magnetic carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNT/Fe3...
متن کاملDevelopment of A New Electrochemical Sensor based on Zr-MOF/MIP for Sensitive Diclofenac Determination
In this study, a new molecularly imprinted polymer with nanoporous material of zirconium metal-organic frameworks (Zr-MOF/MIP) for diclofenac (DFC) measurement is presented. The Zr-MOF/MIP was prepared by electropolymerization method, the Zr-MOFs were used to increase electrode surface and the DFC and para- aminobenzoic acid (pABA) were used as template and functional monomer, respectively. Zr-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 139 24 شماره
صفحات -
تاریخ انتشار 2014